Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120282, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364535

RESUMO

Acid mine drainage (AMD) and municipal wastewater (MWW) are commonly co-occurring waste streams in mining regions. Co-treating AMD at existing wastewater facilities represents an innovative solution for simultaneous AMD reclamation and improved MWW treatment. However, unknowns related to biological processes and continuous treatment performance block full-scale use. The overarching goal of this work was to address questions related to efficacy and performance of continuous processing of AMD in a biological MWW treatment system. Synthetic AMD was co-treated with synthetic MWW in a continuously-operating bench-scale sequencing batch reactor (SBR). SBRs treated MWW with two strengths of AMD (91 and 720 mg/L as CaCO3 Acidity) to capture the variations of coal AMD chemistry and strength observed in the field. Each co-treatment phases lasted 40+ days, during which clarified effluent and settled sludge quality was routinely monitored to determine impacts of co-treatment relative to conventional MWW treatment performance. Co-treatment produced effluent that met key standards for secondary treatment including biochemical oxygen demand (BOD) < 5 mg/L, total suspended solids (TSS) < 20 mg/L, and pH ∼7.0. Addition of AMD also improved treatment performance, increasing Phosphate (PO4) removal by >60% and pathogen removal by an order of magnitude. Furthermore, AMD co-treatment did not exhibit any major impacts on the overall diversity of the wastewater microbial community. Co-treatment sludge had slightly higher settleability and a lower bound water content, but notable changes in sludge morphology was observed. This study demonstrates co-treatment allows for continuous mitigation of AMD without adversely impacting MWW treatment performance in conventional biological MWW processes.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Eliminação de Resíduos Líquidos , Fosfatos , Reatores Biológicos
2.
Water Sci Technol ; 89(3): 588-602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358491

RESUMO

Understanding nutrient cycling patterns in plants deployed within constructed floating wetlands (CFWs) is critical for improving CFWs' design and management practices. This study evaluated phosphorus (P) uptake and release patterns during fall/winter plant senescence and spring regrowth. Two mesocosm-scale CFW experiments were conducted characterizing plant growth, plant tissue P levels, and water quality (nutrients and phytoplankton). Experiment 1 quantified P uptake during spring regrowth after overwintering, and experiment 2 quantified P release during fall senescence. Plant treatments (CFWs with Pontederia cordata or Juncus effusus) were compared to an open-water control. In spring, J. effusus removed 0.056 g P m-2 d-1 (19.4% of the load), P. cordata removed 0.034 g P m-2 d-1 (10%), and the open-water control removed 0.03 g P m-2 d-1 (10%). In fall, J. effusus fixed 0.008 g P m-2 d-1 (2.1% of the load), P. cordata released 0.014 g P m-2 d-1 (-2.1%), and controls fixed 0.023 g P m-2 d-1 (6.3%). P was consistently released during the fall experiment and occasionally released in the spring experiment, likely from senescing plant tissues (fall) and from roots sloughing after new root growth (spring). Results demonstrate the potential for multi-season deployment of CFWs using J. effusus for reducing P loads year-round.


Assuntos
Nutrientes , Áreas Alagadas , Fósforo , Fitoplâncton , Desenvolvimento Vegetal
3.
Environ Monit Assess ; 195(2): 314, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662368

RESUMO

Stratified water collection plays a crucial role in water quality monitoring, as most water bodies are not perfectly mixed systems. In order to precisely collect stratified waters, we developed an inexpensive, simple, and high-resolution sampler to simultaneously collect and measure physical and chemical parameters along vertical water profiles. The water sampler predominantly consists of two parts: (1) an apparatus for measuring sampling depth below the water and (2) water sampling units secured below the water. Proof of concept water sampling was performed in Caohai wetland (Southwest China) at 40 cm intervals, as sampling depth and interval are adjustable. Stratified waters in four sampling sites were characterized by markedly different levels of major and trace elements as well as physicochemical parameters. Results indicate this simple multilevel sampler to be a cheap, precise, and portable option for simultaneously collecting water samples at different depths in a wide array of water body types.


Assuntos
Oligoelementos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Qualidade da Água , China
4.
Water Res ; 214: 118173, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35184018

RESUMO

Municipal wastewater (MWW) and mine drainage (MD) are common co-occurring sources of freshwater pollution in mining regions. The physicochemical interactions that occur after mixing MWW and MD in a waterway may improve downstream water quality of an impaired reach by reducing downstream concentrations of nutrients and metals (i.e., "co-attenuation"). A first-order stream (Bradley Run in central Pennsylvania), with coal MD and secondarily treated MWW entering the stream in the same location, was systematically monitored to determine in-stream water-quality dynamics. Monitored constituents included pH, nutrients (i.e., phosphorus and nitrogen), and metals (e.g., iron, aluminum, manganese). Mixing of the MWW, MD, and upstream water decreased concentrations of phosphate, aluminum, and iron by 94%, 91%, and 98%, respectively, relative to conservative mixtures at the 1400-m-downstream site. The pollutant co-attenuation resulted in water quality equivalent to that upstream of the pollutant sources and improved the phosphorus-based trophic status of the stream. Geochemical models indicate the primary mechanisms for P attenuation in the studied stream were precipitation as variscite (AlPO4:2H2O) or amorphous AlPO4 plus adsorption to hydrous ferric oxide, despite a much greater abundance of hydrous aluminum oxide. The results presented in this study suggest that in-stream mixing of MD with untreated or secondarily treated MWW may be an important, overlooked factor affecting downstream transport of common pollutants in mining regions. Decreased metals loading and increased pH resulting from natural attenuation and remediation of MD could affect the potential for retention of phosphate by stream sediment and could lead to the release of nutrients from legacy accumulations, highlighting the potential need to address high-nutrient discharges (e.g., improved MWW treatment) in concert with MD remediation.

5.
Sci Total Environ ; 815: 152672, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968601

RESUMO

Hydrous ferric-oxide (HFO) coatings on streambed sediments may attenuate dissolved phosphate (PO4) concentrations at acidic to neutral pH conditions, limiting phosphorus (P) transport and availability in aquatic ecosystems. Mesh-covered tiles on which "natural" HFO from abandoned mine drainage (AMD) had precipitated were exposed to treated municipal wastewater (MWW) effluent or a mixture of stream water and effluent. Between 42 and 99% of the dissolved P in effluent was removed from the water to a thin coating (~2 µm) of HFO on the mesh. Geochemical equilibrium model results predicted the removal of 76 to 99% of PO4 from the water by adsorption to the HFO, depending on the HFO quantity, initial PO4 concentration, and pH. The measurements and model results indicated the capacity for P removal decreased as the concentration of P associated with the HFO increased. Continuing accumulation of HFO from upstream AMD sources replenish the in-stream capacity for P attenuation below the MWW discharge. This indicates AMD pollution may conceal P inputs and limit the amount of dissolved P transported to downstream ecosystems. However, HFO-rich sediments also represent a potential source of "legacy" P that could confound management practices intended to decrease nutrient and metal loadings.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ecossistema , Mineração , Fosfatos , Água , Poluentes Químicos da Água/análise
6.
Chemosphere ; 263: 127946, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297017

RESUMO

Although karst groundwater systems provide critical ecosystem services in many regions worldwide, anthropogenic contamination has seriously degraded groundwater quality. Properly elucidating geochemical processes, quantifying contributions of natural and anthropogenic end members, and then protecting karst aquifer systems remain challenging from scientific and engineering aspects. To identify the hydrochemical processes and quantifying contributions of end members (especially, contamination end members), 49 samples were collected from cave waters (CW), artesian springs (AS), and gravity springs (GS) in a karst watershed in Guiyang, China. With increased anthropogenic contamination, the CW, AS, and GS characterized by a Ca-Mg-SO42--HCO3- composition often had pH and SO42- concentrations exceeding USEPA secondary drinking water standards. That is attributed to the influence of water-rock interaction, rainfall, and anthropogenic sources (mainly, sewage and fertilizers), in agreement with the compositions of δ34SSO4, δ18OSO4, and 87Sr/86Sr as well as the results of principal component analysis and correlation coefficients. Based on an end-member mixing model, contributions of rainfall and anthropogenic sources were 47% and 33% of GS, 52% and 41% of CW, and 58% and 35% of AS, respectively. It suggests that the karst groundwater quality is predominantly controlled by rainfall and anthropogenic sources (especially, land use). Results may be applied to properly evaluate the impacts of natural and anthropogenic sources on karst aquifers, coupled with actions to efficiently control potential contamination end members.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Marcação por Isótopo , Poluentes Químicos da Água/análise
7.
J Environ Manage ; 271: 110982, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579529

RESUMO

Acid mine drainage is a persistent and problematic source of water pollution. Co-treatment with municipal wastewater at existing wastewater treatment plants has several advantages; however, potential impacts on plant physicochemical and biological processes have not been well explored. The primary purpose of this bench-scale study was to examine the impact of co-treatment by combining a mild acid mine drainage at various ratios with municipal wastewater, followed by sludge settling and supernatant comparative analysis using a variety of effluent water quality parameters. These measurements were combined with carbonate system and adsorption isotherm modeling to elucidate the mechanisms underlying the experimental results. Acid mine drainage addition decreased municipal wastewater effluent PO43- concentrations below 0.2 mg/L with greater than 97% removal, demonstrating co-treatment as an alternative solution for municipal wastewater nutrient removal. Biochemical oxygen demand remained similar to controls with <10% variation after co-treatment. Coagulation from metals in acid mine drainage was incomplete due to PO43- adsorption, confirmed by comparing experimental results with Langmuir isotherm behavior. Sweep flocculation was the dominating particle aggregation mechanism, and co-treatment led to improved particle clarification outcomes. Improved clarification led to up to 50% Fe removal. Final pH had little variation with all conditions having pH > 6.0. Carbonate system modeling adequately explains pH effects, and can also be applied to varying acid mine drainage matrices. The impact of acid mine drainage addition on the municipal wastewater microbial community was also investigated which provided evidence of microbial adaptation. This study demonstrates post-aeration co-treatment enables mitigation of mild acid mine drainage without adversely affecting wastewater treatment plant processes. Reported results also frame required future studies to address extant questions prior to full-scale adaptation.


Assuntos
Águas Residuárias , Poluentes Químicos da Água/análise , Ácidos , Metais , Mineração , Esgotos , Eliminação de Resíduos Líquidos
8.
J Environ Qual ; 48(5): 1549-1556, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31589739

RESUMO

We report a preliminary assessment of ferrate [Fe(VI)] for the treatment of acid mine drainage (AMD), focused on precipitation of metals (i.e., iron [Fe] and manganese [Mn]) and subsequent removal. Two dosing approaches were studied to simulate the two commercially viable forms of Fe(VI) production: Fe(VI) only, and Fe(VI) with sodium hydroxide (NaOH). Subsequent metal speciation was assessed via filter fractionation. When only Fe(VI) was added, the pH remained <3.6, and the precipitation of Mn and Fe was <30 and <70%, respectively, at the highest, stoichiometrically excessive Fe(VI) dose. When NaOH and Fe(VI) were added simultaneously, precipitation of Mn was much more complete, at doses near the predicted oxidation stoichiometric requirement. The optimal dosage of Fe(VI) for Mn treatment was 25 µM. The formation of Mn(VII) was noted at Fe(VI) dosages above the stoichiometric requirement, which would be problematic in full-scale AMD treatment systems. Precipitation of Fe was >99% when only NaOH was added, indicating that oxidation by Fe(VI) did not play a significant role when added. The Fe(III) and Al(III) particles were relatively large, suggesting probable success in subsequent removal through sedimentation. Resultant Mn-oxide particles were relatively small, indicating that additional particle destabilization may be required to meet Mn effluent goals. Ferrate seems viable for the treatment of AMD, especially when sourced through onsite generation due to the coexistence of NaOH in the product stream. More research on the use of Fe(VI) for AMD treatment is required to answer extant questions.


Assuntos
Compostos Férricos , Ferro , Manganês , Mineração , Oxirredução
9.
Chemosphere ; 234: 777-788, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31247487

RESUMO

Karst water, which provides 25% of the world's drinking water, is especially vulnerable to anthropogenic contamination. Such is the case in southwestern China with trace element pollution in important karst aquifers. Approximately 20% of the total study area consisted of abandoned mine tailings with elevated concentrations of Fe, S, Mn, As, Cu, and Cr. Acid mine drainage (AMD) water originating from pyrite oxidation of the tailings was characterized by low pH and high concentrations of Fe, SO42-, and As. Concentrations of Fe, Mn, Al, SO42-, As, Cd, and Pb in spring water in wet and dry seasons were greater than WHO and USEPA drinking water guidelines. Based on the results of mineral characterizations, hydrogeochemistry, and isotopic compositions (δ34SSO4, δ18OSO4, and δ18OH2O), the chemistry of AMD water was primarily controlled by pyrite oxidation, river water by atmospheric precipitation, and spring water by carbonate rock dissolution and mixing with river and AMD waters. A three-end-member mixing model identified the contributions of these different end members to spring water quality. Although AMD water was characterized by the lowest mixing percentages during the wet (14.1%) and dry (26.9%) seasons, it played a very important role in degrading spring water quality. Based on these findings, an investigation strategy was developed for illuminating seasonal water quality and potential remediation methods corresponding to the contaminants in the spring water are also proposed to manage this seriously polluted karst system. Results could benefit remediation planning for these distinctively complex and vulnerable systems in other regions of the world.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Nascentes Naturais/química , Poluentes Químicos da Água/análise , Qualidade da Água/normas , China , Ferro/química , Mineração , Estações do Ano , Sulfetos/química
10.
Environ Geochem Health ; 39(3): 681-700, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28337621

RESUMO

This study assessed metals in irrigation water, soil and potato crops impacted by mining discharges, as well as potential human health risk in the high desert near the historic mining center of Potosí, Bolivia. Metal concentrations were compared with international concentration limit guidelines. In addition, an ingested average daily dose and minimum risk level were used to determine the hazard quotient from potato consumption for adults and children. Irrigation water maximum concentrations of Cd, Pb and Zn in mining-impacted sites were elevated 20- to 1100-fold above international concentration limit guidelines. Agricultural soils contained total metal concentrations of As, Cd, Pb and Zn that exceeded concentration limits in agricultural soil guidelines by 22-, 9-, 3- and 12-fold, respectively. Potato tubers in mining-impacted sites had maximum concentrations of As, Cd, Pb and Zn that exceeded concentration limits in commercially sold vegetables by 9-, 10-, 16- and fourfold, respectively. Using conservative assumptions, hazard quotients (HQ) for potatoes alone were elevated for As, Cd and Pb among children (range 1.1-71.8), in nearly all of the mining-impacted areas; and for As and Cd among adults (range 1.2-34.2) in nearly all of the mining-impacted areas. Only one mining-impacted area had a Pb adult HQ for potatoes above 1 for adults. Toxic trace elements in a major regional dietary staple may be a greater concern than previously appreciated. Considering the multitude of other metal exposure routes in this region, it is likely that total HQ values for these metals may be substantially higher than our estimates.


Assuntos
Irrigação Agrícola , Produtos Agrícolas/química , Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Solanum tuberosum/química , Poluentes Químicos da Água/análise , Adulto , Arsênio/análise , Arsênio/toxicidade , Bolívia , Cádmio/análise , Cádmio/toxicidade , Criança , Produtos Agrícolas/toxicidade , Monitoramento Ambiental , Humanos , Chumbo/análise , Chumbo/toxicidade , Metais Pesados/toxicidade , Medição de Risco , Poluentes do Solo/toxicidade , Poluentes Químicos da Água/toxicidade , Zinco/análise , Zinco/toxicidade
11.
J Environ Qual ; 46(1): 1-9, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28177423

RESUMO

The remediation of mine water to preserve receiving water quality has advanced substantially over the past half century, but prospective regulations to limit the conductivity of mining-impacted waters pose a significant new challenge. Conventional approaches to reduce high levels of conductivity in these mine waters are often costly, requiring high levels of maintenance and significant inputs of energy and refined chemicals. In contrast, passive biological treatment (PBT) systems are a relatively low-cost, low-maintenance treatment technology for mine waters that have been used for over three decades. However, their practical ability to reduce conductivity is unclear, given previous research reports focused on the removal of metals, acidity, and solids. A systematic literature review to identify previous reports of PBT systems at the laboratory or field scale that include evaluations of changes in conductivity suggests that decreases in conductivity of 30 to 40% are achievable. Substantial variability in performance is common, however, and conductivity increased markedly in some systems. This variation may be associated with the dissolution of limestone, which is a key treatment material in some systems. Although the development of PBT to serve as pre-, post-, or stand-alone treatment systems targeting conductivity may reduce overall treatment cost in some settings, optimization of these designs requires an increase in the number of published conductivity datasets from similar systems, detailed reports on the key ions contributing to elevated conductivity region to region, and further investigation of the underlying biochemical processes responsible for conductivity reductions.


Assuntos
Mineração , Poluentes Químicos da Água , Purificação da Água , Metais , Estudos Prospectivos , Literatura de Revisão como Assunto
12.
J Environ Qual ; 44(2): 704-10, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26023988

RESUMO

The viability of removing less commonly addressed metals (e.g., Cd, Cu, Ni, and Pb) in a passive cotreatment concept was tested using a microcosm-scale, three-stage batch reactor system in which acid mine drainage from an abandoned adit on Cerro Rico de Potosí and raw municipal wastewater from Potosí, Bolivia, were introduced at a 5:1 ratio. The acid mine drainage had pH 3.58, acidity 1080 mg L as CaCO equivalent, and elevated concentrations of dissolved Al, Fe, Mn, Zn, Cd, Cu, Ni, and Pb, among other metals/metalloids. The municipal wastewater had pH 9.05 and alkalinity 418 mg L as CaCO equivalent, with 5.6 and 38 mg L of nitrate and phosphate, respectively. Previous analyses noted substantial pH increase, phosphate removal, denitrification, and removal of Al, Fe, Mn, and Zn. Prompted by these results, subsequent analyses were conducted for the current study, which noted that dissolved concentrations of Cd, Cu, Ni, and Pb decreased by 78.5, 18.3, 25.5, and 45.9%, respectively. Additionally, concentrations of Ce, Cr, Gd, and La decreased throughout the system. The study revealed the broader applicability of passive cotreatment of acid mine drainage and municipal wastewater, specifically for removing metals that are often difficult to address with conventional passive treatment approaches, such as Cd, Cu, Ni, and Pb. Results could be applicable for treatment alternatives in developing and developed countries where these waste streams occur in close proximity.

13.
J Occup Environ Med ; 57(5): 543-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25689723

RESUMO

OBJECTIVE: The goal of this study was to determine the health effects of living downstream from mines in the Potosí region of Bolivia. METHODS: Histories, physical examinations, and urinalyses were completed on adults recruited from mining and nonmining villages in Bolivia. Blood concentrations of Cd, Hg, and Pb were determined in a subset of participants. Multiple logistic regression analyses were performed. RESULTS: Mining region participants had significantly higher frequencies of hypertension, hematuria, and ketonuria. Hematuria was significantly elevated among those watering livestock downstream from mines and eating grains from their own farm (odds ratio = 4.3; 95% confidence interval, 1.1 to 17.7). Significantly higher blood concentrations of Pb were observed in a subsample of participants with hematuria (4.80 µg/dL vs 10.91 µg/dL; P = 0.026). CONCLUSIONS: Efforts to abate environmental exposure to toxic metals seem warranted.


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Hematúria/induzido quimicamente , Hipertensão/induzido quimicamente , Cetose/induzido quimicamente , Metais Pesados/toxicidade , Mineração , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bolívia , Estudos Transversais , Exposição Ambiental/análise , Monitoramento Ambiental , Poluentes Ambientais/sangue , Feminino , Hematúria/sangue , Hematúria/diagnóstico , Humanos , Hipertensão/sangue , Hipertensão/diagnóstico , Cetose/sangue , Cetose/diagnóstico , Masculino , Metais Pesados/sangue , Pessoa de Meia-Idade , Adulto Jovem
14.
Sci Total Environ ; 487: 123-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24784737

RESUMO

Karst water resources, which are critical for the support of human societies and ecological systems in many regions worldwide, are extremely sensitive to mining activities. Identification and quantification of stable isotope (δ(2)HH2O andδ(18)OH2O) composition for all sources is essential if we are to fully understand the dynamics of these unique systems and propose successful remediation strategies. For these purposes, a stable isotope study was undertaken in two similar watersheds, one impacted by acid mine drainage, and the other not. It was found that the majority of δ(2)HH2O and δ(18)OH2O values of acid mine drainage (AMD), AMD-impacted and Main channel mix waters plotted above the local meteoric water line (LMWL), while the non-AMD-impacted water was below the LMWL. The AMD and AMD-impacted water had a similar composition ofδ(18)OH2O and heavierδ(2)HH2O than that of the other waters as a result of pyrite oxidation and Fe hydrolysis. The non-AMD-impacted and spring waters were the background waters in the study area. The composition ofδ(2)HH2O and δ(18)OH2O for the former was influenced by the re-evaporation and water-rock interaction, and that for the latter was controlled by re-condensation. Along the water flow, the Main channel mix water is recharged by AMD-impacted, non-AMD-impacted and spring waters. The composition ofδ(2)HH2O andδ(18)OH2O for the Main channel mix water was coincident with the characteristics of water mixing, supported by three-component mixing modeling of upstream spring, non-AMD-impacted and AMD-impacted waters. The composition of δ(2)HH2O and δ(18)OH2O for the Main channel mix water was mainly affected by the AMD-impacted water. These results help elucidate the impact of AMD on δ(2)HH2O and δ(18)OH2O compositions for karst waters and demonstrate the utility for impact assessments and remediation planning in these unique systems.


Assuntos
Monitoramento Ambiental , Hidrogênio/análise , Mineração , Isótopos de Oxigênio/análise , Poluentes Químicos da Água/análise , China , Concentração de Íons de Hidrogênio
15.
J Environ Qual ; 40(1): 206-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21488509

RESUMO

A laboratory-scale, four-stage continuous-flow reactor system was constructed to test the viability of high-strength acid mine drainage (AMD) and municipal wastewater (MWW) passive co-treatment. Synthetic AMD of pH 2.6 and acidity of 1870 mg L(-1) as CaCO3 equivalent containing a mean 46, 0.25, 2.0, 290, 55, 1.2, and 390 mg L(-1) of Al, As, Cd, Fe, Mn, Pb, and Zn, respectively, was added at a 1:2 ratio with raw MWW from the City of Norman, OK, to the system which had a total residence time of 6.6 d. During the 135-d experiment, dissolved Al, As, Cd, Fe, Mn, Pb, and Zn concentrations were consistently decreased by 99.8, 87.8, 97.7, 99.8, 13.9, 87.9, and 73.4%, respectively, pH increased to 6.79, and net acidic influent was converted to net alkaline effluent. At a wasting rate of 0.69% of total influent flow, the system produced sludge with total Al, As, Cd, Cr, Cu, Fe, Pb, and Zn concentrations at least an order of magnitude greater than the influent mix, which presents a metal reclamation opportunity. Results indicate that AMD and MWW passive co-treatment is a viable approach to use wastes as resources to improve water quality with minimal use of fossil fuels and refined materials.


Assuntos
Cidades , Resíduos Industriais , Mineração , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Ácidos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...